
On-the-fly contextual adaptation
with the RoleAdapter Pattern

Marc-Antoine Parent
Centre de Recherche Informatique de Montréal (CRIM)

550 Sherbrooke West, suite 100
Montréal (Québec) Canada H3A 2N4

+1 514 840 1234
maparent@crim.ca

ABSTRACT
The RoleAdapter Design Pattern allows using objects of
any model as if they implemented any given programmatic
interface, with contextual behavior. To achieve this, it
makes objects from many basic building blocks of OOP,
like methods, method signatures, interfaces, etc. This allows
clients of a data model to define, at run-time, an interface
for any data model they have to use. Objects encapsulating
methods, defined independently for the model, are chosen
and bound to the signatures included in the interface
according to external configuration hints. Since the
adaptation is done local to a context, different view
instances can show different aspects of a complex model.
The resulting composite definition of interface is similar in
intent to that of subject-oriented programming, but achieved
wholly within a traditional OOPL like Java.

Keywords
Design Patterns, Roles, Subject-Oriented Programming

INTRODUCTION
The RoleAdapter pattern allows us to use objects of any
model as if they implemented any given programmatic
interface, with contextual behavior. Traditional OO design
emphasizes that the data model should be generic enough to
be used with many views. The views, on the other hand,
must reflect the model’s structure in their display, and
hence are more closely tied to one model’s structure. We
cannot normally reuse view components with different
models, unless they share an interface. In CASE tools, each
node in a class diagram is involved in both an inheritance
and an aggregation hierarchy. We would want to display the
hierarchy obtained from these distinct interfaces in the same
reusable display tool.

Ideally, each view we use should contribute to the model’s
interface at run-time, as in Subject-Oriented
Programming [1]. Within conventional OO languages,

many Design Patterns are aimed at altering a frozen
object’s interface. The original Adapter [2] does this, but
only at compile-time, and it does not scale well; in a
complex system of objects, one adapter is built for each
object of the original system, relationships between adapted
objects have to be translated into relationships between
adapters, etc. Other relevant Patterns are Erich Gamma’s
Extension [3] pattern, Baümer and Riehle’s Role objects
[4], etc. Unfortunately, those patterns require the object to
follow some extension protocol, which we wanted to avoid.

DESIGN
RoleAdapters are defined on arbitrary classes (not
instances) at run-time. To that end, many basic constructs of
OOP were made into first-class objects: the method
implementation; its signature (name, return and parameter
types); the role (or interface: the set of signatures that a
class must implement when used in a certain role by a
client), etc. (cf. diagram.)

MethodFactory

Context

MethodRegistry

Hint

11

**
Signature

11

Client

11

Binding

11

Class Role

**

Casting

Method

0..10..1
*

1

*

1

11

0..1

*

0..1

*

RoleAdapter

11 11

**

11

**

creates

binds

creates

The client expects to use objects according to a set of
Signatures defined in a Role. Those Signatures will
correspond to Methods. Binding objects, grouped in
RoleAdapters, will contain the corresponding pairs.
Initially, Bindings only contain Signatures; the unbound
RoleAdapter is then equivalent to the Role. As a client
attempts to make an instance of a certain class play a certain
Role, it asks the Context to create a valid Class-
RoleAdapter relationship (Casting) by fulfilling each of the
RoleAdapter’s Bindings with a Method that satisfies the
Bindings’s Signature.

In order to find appropriate Methods, each Context owns a
distinctive set of Hints, containing factories that will attempt
to build the Method from its Signature (if the required
Signature fits that of the Hint.) Configuring different views’
Contexts with different Hints allows for fine-grained
simultaneous access to various aspects of a model at run-
time. The MethodFactory’s job may be simple, like creating
a Method of a given class, or retrieving an existing Method
with an alternate Signature from the Context, but more
complex MethodFactories allow us to specify arbitrarily
complex derived Method objects.

If no Hint specifies how to build our Method, the Context
queries the context-independent MethodRegistry for a
model-specific Method that adequately fulfills the Binding.
The set of those model-specific Methods amounts to a
dispersed adapter for the model. The candidate Casting, and
any Casting registered previously, establish equivalence
classes between the Signatures of those Methods defined
strictly in terms of classes, and more abstract Signatures
owned by, and defined in terms of Roles. In case of failure,
the Context asks a broader Context that may have further
Hints (using Chain of Responsibility.)

After the binding phase, the client can access the Method
through the RoleAdapter as follows:
roleAdapterXXX.bindingYYY.theMethod.

execute(objectZZZ, params...);

instead of, traditionally:
objectZZZ.methodYYY(params...);

The latter code is also what will often be found in the
Method object’s execute method. But the flexibility we
gain offsets the cost of doubling all virtual calls.

Defining Methods as first-class objects allows us to build
and define complex structures from them. For example, we
can compose links between objects through Object
Composition on accessor-like Methods. Similarly, we have
found it useful to define some setter-like Methods to be
observable, through wrapping them in an observable
Decorator. We also use the Observer pattern to create

dynamic Methods, from a Binding that observes the Context
for changes in the Hint definitions. In all cases, these
complex Methods are used interchangeably with the atomic
ones. We believe that these objects are an interesting
Design Pattern in their own right, inspired by Strategies and
reminiscent of ValueModels [5].

CONCLUSION
Using this pattern, we believe that we have achieved a
sizeable fraction of the advantages of subject-oriented
programming within the confines of a traditional object-
oriented language. Readers interested in the uses of the
RoleAdapter pattern should refer to papers on the Giza
framework [6].

ACKNOWLEDGMENTS
The author wishes to thank CRIM for its support of our
team’s research in information visualization. Many thanks
go to Luc Beaudoin, who made Giza necessary by inventing
innovative visualization techniques. The project to apply
them to diverse data models received support from Frances
de Verteuil, director of the HCI group at CRIM. Many
people at CRIM contributed to the Giza architecture in
various ways, most notably Louis Vroomen who made it
yield visible results long before it should have. Ruedi
Keller, of Université de Montréal, also offered useful input.

REFERENCES
1. Harrison, W. and Ossher, H. Subject-Oriented

Programming (A Critique of Pure Objects), in
Proceedings of OOPSLA’93 (Washington DC, 1993),
ACM Press, 411-428

2. Gamma E., Helm R., Johnson R. and Vlissides J. Design
Patterns: elements of reusable object-oriented software.
Addison-Wesley, Reading MA, 1995.

3. Gamma, E. Extension Objects, in R. C. Martin, D.
Riehle, and F. Buschmann (eds.). Pattern Languages of
Program Design 3, (Reading, MA, 1998), Addison-
Wesley. See also Johnson, R. E. Facet. Available at
http://st-www.cs.uiuc.edu/users/johnson/facet/facet.html.

4. Bäumer, D., Riehle, D., Siberski, W., and Wulf, M.
Role Object, in Proceedings of PLoP ’97. Tech Report
WUCS-97-34. Washington University, Dept. of
Computer Science, 1997. Paper 2.1, 10 p.

5. The discrete charm of ValueModels, in ParcNotices 4,
2, (Sunnyvale, CA, Summer 1993), ParcPlace Systems,
1, 8-9.

6. Papers describing the Giza framework are available at
http://www.crim.ca/~vroomen/mainPages/visual/giza.html.

